
 1

From ABAC to ZBAC: The Evolution of Access Control Models

Alan H. Karp
Hewlett-Packard Laboratories

Alan.Karp@hp.com

Harry Haury
NuParadigm

hhaury@nuparadigm.com

Michael H.Davis
SPAWAR

Michael.H.Davis@navy.mil

Abstract
Controlling access to resources and services is fundamental to security. A variety of access
control models have been developed over the years, each designed to address different aspects of
the problem. This report will examine the strengths and weaknesses of the various approaches as
applied in a cross domain services and as implemented in common SOA frameworks. Please
note, the access control mechanisms are discussed in this context and the comments are not
general critiques of the advantages and disadvantages of the various systems. Our primary use
case comes from an example investigated by the US Navy, which is examined for illustrative
purposes since it is easy to understand (For more additional applicability please refer to the
Department of Defense and Intelligence Community Service-Oriented Architecture Security
Reference Architecture, Version 1.0 and the discussion of hierarchical policy enforcement
frameworks and the section 4.2 Advanced SOAP Interaction Patterns). That discussion also
extends the enclosed use case slightly to address issues it doesn’t cover. Recognizing those
issues led to the development of an access control model that uses authorizations presented with
the request to make an access decision, an approach we call authoriZation Based Access Control
(ZBAC). This paper is intended to stimulate a structured technical dialogue within the IA&A
community on potential alternative enterprise approaches and possible security risks with current
approaches. The KEY implementation details are in the appendices, so be sure to read them too!

Preface
The evolving Net Centric and SOA application frameworks and the Presidential directives to
share information across traditional domain boundaries requires a new approach to access control
in order to implement, manage, and maintain these new systems. Fundamental to all security
systems is the ability to reasonably control access to systems and data. Many initial questions
and disagreements in the community have been largely semantic and differences in IA&A
lexicon interpretations, partially due to the nuances in the military view of security and
information assurance as compared to the commercial sector. Additionally a significant part of
the paper’s thrust is contained in the appendices (A = detailed access control process / use case
and B = detailed pros / cons comparison matrix), as the front materials set the stage and cover
the descriptions and rationales on the proposed “ZBAC” approach. It is recommended that
individuals well versed in IA&A that already know the security risks associated therein, skim the
paper for overall perspective and focus on the two appendices for a structured technical dialogue.

The fundamental premise is that identity and authentication can be cryptographically bound to all
authorization steps and history. ZBAC is an attempt at eliminating the improper surrogates or
authorizations that arise in these other security models in the cross domain references intrinsic to
SOA and Net Centricity. It’s the lack of control and accountability, especially in the service
chaining issue, which is part of the broader security issues surrounding the creation of composite
services in the SOA space. In essence, this report proposes ZBAC, a stateless asymmetric
approach to integration, since it is the creation of secure authorizations in advance of the

 2

transactions that is the key to transitioning between domains. ZBAC also simplifies systems and
user management tasks, is significantly more tolerant of intermittency, supports background pre-
positioning of some security credentials and authorizations, allows chaining of systems while
enforcing least privilege, and can accommodate low bandwidth constraints.

Clearly all access control must be both authentication-based and authorization-based where
ZBAC continues to use the same basic IA&A elements. The change is in the pattern of use and
the use of cryptographically protected transfer of authorizations between participating entities.
While access control is a critical SOA IA enabler, especially with cross domain implementations,
the following enterprise IA problems must also be addressed in parallel for enterprise SOA IA to
work:

- use of a standard enterprise architecture and specific security standards (including
versions and extensions therein),

- when SOA is deployed across domains we would expect multiple protocols and multiple
data formats. So the security architecture should be able to perform given an
environment that includes protocols translation and data transformation

- distributed / transitive trust model (to support the new "need to share" coalition
environments),

- multi-tiered, automated delegation of privilege, authorization,
- enforcement of least privilege, other fundamental security tenets
- enhanced manageability,
- establishment of a means for secure delegation of authority between operating domains,

and
- SOA SLAs, controlling overall efficiency and performance (especially on low BW /

disadvantaged users).
Without a common understanding of the IA&A end-state objectives across the full spectrum of
access control methods, fully addressing these enterprise problems is not possible.

Any solution must have means for handling Identity, Authentication and Authorization (IA&A).
Authentication is the process of reliably verifying the identity of someone or something.1 This is
distinct from the assertion of identity (known as identification) and from deciding what authority
accrues to that identity (authorization). Then, of course, the dilemma is that there are no current
digital policy implementation overarching schemas (XACML, SecPal and WS-SecurityPolicy
aside - as partial capabilities), methods to provide the authoritative sources for all those "PDPs"
to provide "PEPs" a coordinated, correlated, dynamic and adjudicated decision on who gets to
see what based on differences in policy, attributes and levels therein.

Additionally, IA/Security in a complex enterprise environment is also complex, relying on layers
of governance, standards, processes, compliance checking, and auditing to provide adequate
defense in depth. Technology alone does not guarantee IA success (witness the countless
Windows systems that are left unsecured on every platform despite being given a step by step
guidebook), so additional measures / processes are needed to prove the overall system assurance
level, principally through the C&A process. Finally, the access control analysis conducted to
date addressees DOD and recognized Federal PKI, yet until there is a recognized state, local,

1 The word “authentication” is also used for other purposes, such as “authenticating the integrity of the contents of a
message”. The definition we give is a suitable one for this paper.

 3

allied, and coalition PKI, there is some added risk for US-only NIPRNET and SIPRNET PKI
supporting the CDS/MLS authentication, authorization, and web security services. Appendix C
explores several observations and processes that support IA/security (including C&A) that
should be on a “watch list” for all open architecture environments that stress fully operational,
multi-Service integrated, automated, implementation ready capabilities.

1. Introduction

There are many aspects to building secure systems, such as privacy, integrity, non-repudiation,
and others. This paper will focus on access control - deciding whether or not to honor a request
for an action or series of actions. A number of models have been developed to address various
aspects of this problem.

In the early days of the mainframe, when timesharing was new, people realized that the biggest
need was to prevent one user from interfering with the work of others sharing the machine. They
developed an appropriate access control model, one that depended on the identity of the user.
Permission to use a system resource, such as a file, was linked to the user’s identity. This
approach is called Identification Based Access Control (IBAC) in this paper IBAC stores
permissions in an access matrix, and the IBAC model doesn’t include a specification of
permissions for changing its entries. That left it to a trusted party, the system administrator, to
make all changes. The administrator typically had unfettered rights to access anything within the
system As the number of users grew, the burden on the administrator became untenable. That
led to the introduction of additional concepts, such as “owner” and “group.” It was hard to
understand all the permissions that would be granted by adding a user to a group, and the rights
granted “owner” did not allow for Mandatory Access Control (MAC).

While IBAC could manage centralized monolithic systems, distributed systems proved to be
problematic for IBAC. Users could have many identities and often had to authenticate in
different ways on different systems, which led to work to consolidate access control systems
with Federated Identity Management, FIdM, and Single Sign-On/Single Log-Out (SSO/SLO).
Managing the access rights for individuals and machines became too large a burden and prone to
error, particularly de-synchronization. As complexity increased Role Based Access Control
(RBAC) [1] was offered as a solution. Permissions in the access matrix were tied to roles, and
which users could assume a particular role became the means of controlling user access.
Challenges with RBAC became apparent when it was extended across domains. Reaching
agreement with all partners on what rights to associate with a role proved to be difficult.
Adding, deleting, or modifying the duties of a role involved updating too many policy stores.
Further, RBAC had limited support for context, such as day vs. night or war vs. peace, when it
was important in the access decision.

Attribute Based Access Control (ABAC, sometimes referred to as Policy Based Access Control
or PBAC) [2, 4] or Claims Based Access Control or CBAC [3]), was proposed as a solution to
these new issues. The access decision would be based on attributes that the user could prove to
have, such as clearance level or citizenship. That approach made it easy to include context in the
access decision. As it evolved it was also called Risk Adaptive Access Control (RAdAC).

 4

Access implications of changing a user’s attributes where left unspecified in most
conceptualizations. There is also the issue of reaching agreement on the meaning of attributes
when spanning organizations because of the need to reconcile complex and extensive lexicons.

IBAC, RBAC, ABAC and even CBAC – Claims Based Access Control all rely on authentication
in the local accessed system context and have no native implementation of cross domain access
control, although they are extensively used as the gateway to many systems. For simplicity this
paper treats them as single solution and ignores those versions that have implemented aspects of
the ZBAC architecture. They are collectively referred to as autheNtication Based Access
Control (NBAC).2 Section 3 explains why NBAC models lead to security problems, such as
violations of least privilege and confused deputies, and management problems, such as problems
updating rights, assigning responsibility, and coordinating with partners in the cross system,
information sharing, and SOA arenas. As service composites and service chaining as well as
broad systems integration projects continued, it became obvious that a new capability was
required that could securely delegate trust and enforce the concept of least privilege.

Recognizing those issues led to the development of an access control model that uses
authorizations presented with the request to make an access decision, an approach we call
authoriZation Based Access Control (ZBAC).3 This approach directly addresses the security
and manageability issues inherent with NBAC. The ZBAC model can be implemented with
little change to existing systems. Further, ZBAC can be implemented entirely within the existing
Services Oriented Architecture standards [5]. Even so, ZBAC is not tied to those standards.
Other XML-based approaches have been considered for the Grid [6]. We have also
demonstrated ZBAC using SPKI certificates [7] and without certificates for RESTful web
services [8]. Other approaches have added some of the architectural elements of ZBAC in an
NBAC frameworks [9].

It is also important to note that the terms NBAC and ZBAC are not as precise as desired. Many
systems that rely on the user’s authentication to make an access decision deliver an authorization
to the service or its Policy Enforcement Point (PEP). Likewise, ZBAC systems require that the
user authenticate in order to know which authorizations to grant. We have chosen these terms
because they reflect what the user sees. In NBAC systems, the user submits an authentication
along with the service request. In ZBAC systems, the user submits an authorization along with
the request. The terms are not intended to imply more than that.

In the next section, the clear distinctions among the models are examined and how each of the
models fits that framework is determined. Next, an illustrative use case is presented that makes
the distinction among the approaches more clear. The use case is extended to clarify some other
vulnerabilities as well. Appendices show details of the service lifecycle with ZBAC and a matrix
showing various aspects of the problem and how each model deals with them.

2 This nomenclature takes the user’s view of the mechanism. Many NBAC implementations use authorizations, but
the user never sees them.
3 Our earlier papers used the acronym ABAC, which conflicts with the acronym for the more commonly used term
Attribute Based Access Control.

 5

2. Access Control

Access control is the mechanism by which services know whether to honor or deny requests.
There are four pieces to the problem.

Identification: Assigning a responsible party for actions. A responsible party may be a
person or a non-person entity (NPE), such as a computer or a router. We’ll use the term
user to cover both cases.
Authentication: The means used to prove the right to use an identity, take on a role, or
prove possession of one or more attributes. 4
Authorization: The means of expressing the access policy by explicitly granting a right.
Access Decision: Using some combination of the other three to decide whether or not a
request should be honored.

It is common to conflate two or more of these parts of the access control problem. However, we
gain a better understanding by keeping them distinct, even in a conventional system such as
Windows or Unix. In such a system, identification is assigning an account for the user.
Authentication lets processes prove that they are running on behalf of a particular user. Adding
an entry for an identity in an access control list (ACL) is an act of authorization. Checking the
ACL for a resource before granting access to it is the access decision step.

Access control becomes challenging in a distributed system, particularly one that crosses domain
boundaries, such as between coalition partners, because we need to decide where and when to
perform each of the steps. In a distributed multi-system environment it is only possible to
identify the user in the user’s local domain. No other domain possesses the context needed to
identify the user. Since we expect identities to persist for some time, we do the identification
step when a new user joins the domain or a new NPE is deployed. Similarly, the access decision
is properly done in the service’s local domain at the time of the request.

Systems based on NBAC authenticate at request time in the system’s domain. The access
decision is made by using that authentication to determine the authorization. Implementing
NBAC in a distributed system requires that we solve a number of difficult problems, including
PKI rationalization, federated identity management, and single sign on. These models are
subject to a number of security vulnerabilities, such as violations of Least Privilege and confused
deputy, which are described in more detail in Section 3.

With ZBAC, authorization is based on authentication in the user’s domain before the request is
made. The result of that authentication is one or more authorizations, which can be represented
by cryptographically bound credentials or assertions such as SAML assertions. These
authorizations can be submitted with a request or pre-cached for the length of time they are valid.
The service or its Policy Decision Point (PDP) only needs to verify the validity of the
authorization to make an access decision. The user’s identity, which can be a pseudonym, can be
recorded by the service for audit purposes. Appendix A shows an abbreviated example of the
service lifecycle with ZBAC. ZBAC involves a relatively small change that has important

4 The word “authentication” is also used for other purposes, such as “authenticating the integrity of the contents of a
message”. The definition we give is a suitable one for this paper.

 6

implications, which are described in the next Section. The table in Appendix B summarizes the
differences between typical NBAC systems and ZBAC.

3. NBAC Issues, ZBAC Solutions

Using authentication to make an access decision introduces a number of issues, which arise
because the authentication is necessarily independent of the request. That separation of
designation, what is being requested, from authorization, the right to make the request, opens up
the possibility that the requester and the service will interpret things differently. In this section,
we’ll look at several of these problems.

Global Agreements

When using NBAC, the user is authenticated in the service domain, which requires prior
agreement on the meaning of those credentials (and the Structure, message exchange and
meaning therein). Since users invoke services in many domains, either these agreements become
global or users will have to use many different sets of credentials. With ZBAC, users only
authenticate in their own domains, and the connection to other systems is governed by means of
an agreement between domains. The user’s home or local domain can never authorize the user
to do something that the local domain is not delegated to authorize.

With IBAC, the user’s identity must be known to the service domain. That requires users to deal
with multiple userids and multiple authentication mechanisms. Recently, Federated Identity
Management (FIdM) and Single Sign-On/Single Log-Out (SSO/SLO) were introduced to address
those problems, but these approaches add complexity. IBAC also is difficult to manage,
requiring global updates when users enter or leave the system or have their rights change.
Synchronization is a difficult task as well since users are still managed in each service domain.

ZBAC users are only managed in their own domains, which can change the authorizations they
are granted when their permissions change. There is no need to federate identities or provide
SSO/SLO. The ZBAC approach also protects information about the user’s organization that is
generally required with the identity challenges in many NBAC systems. In fact, depending on
governance it is possible to allow credentials/assertions to be issued that don’t even contain
identity.

RBAC requires a mutual understanding of the meaning of roles. Often, a role in one domain has
nearly the same rights as the corresponding role in another domain, but not exactly. The solution
has been to introduce new roles to cover the discrepancies, leading to the well known problem of
role explosion. With ZBAC, the set of authorizations being applied to a specific task is actually
a calculated intersection of authorization and policy vectors, however they are encoded. Roles
are one such encoding, but in this case they are defined solely by the user’s domain.

Everyone must agree on a set of attributes and their meaning when using ABAC. That’s not an
easy task. The NSA recently spent considerable time reaching agreement on roles for use within
the US Department of Defense (DoD). The participants agreed to 13 attributes, most of them

 7

related to the user’s identity, such as email address, and first, middle, and last name. Reaching
agreement will be harder when dealing with coalition partners.

Attributes, such as citizenship, can be included in ZBAC authorizations to better support
RAdAC. Global agreement is needed if they are to be useful, but that agreement may be easier
to achieve because of the limited use of the attributes.

Excess Authority

In traditional access control systems, every program a user runs needs to be able to authenticate
as the user in order to exercise any subset of the user’s permissions. This choice was appropriate
in the early days of timesharing on mainframes when IBAC was introduced. In that environment
programmers often ran their own programs against their own data. Today, there are three parties,
often with conflicting agendas. The user is running a program written by someone else, who
may have planted a back door, against data provided by a third party, who might have
constructed the data to exploit a flaw in the program. Clearly, giving control of all the user’s
rights to the programmer and potentially to the data provider entails considerable risk.

We see the effect of this choice daily. It is what lets a virus delete any of the user’s files and
send any personal information stored on the computer to identity thieves. It also means that
FIdM and SSO increase the attack surface available to malicious or erroneous software. Note
that RBAC and ABAC do not solve the problem by themselves. Every program has the ability to
use or abuse every permission allowed by the user’s authentication.

ZBAC encourages users to delegate subsets of their rights to programs they run. For example,
editing a file requires that the instance of the word processor have access to one user file, the one
being edited. With proper enforcement of Least Privilege, which is easily followed with ZBAC,
a backdoor or exploited vulnerability will only be able to damage that one file.

Ambient Authority

Authentication is necessarily independent of the request being made. The result is that the access
decision allows the request if any of the user’s permissions matches the request, which makes it
impossible to attach specific rights to individual arguments. For example, a user wishes to copy
the contents of one file to another but specifies the arguments to the copy function in the wrong
order. That’s a mistake, but the user has no way to make the erroneous request fail by attaching
only the user’s read permission to the input argument and write permission to the output
argument.

ZBAC has no ambient authorities. Each permission being exercised is represented by an explicit
authorization. Each authorization can be tied to a specific argument, allowing fine-grained
control over the permissions. Combining designation with authorization in this way avoids any
possible confusion over which permissions to apply.

 8

Delegation and Revocation

Consider a user Alice with an account in a SharePoint area. Alice would like Bob to monitor one
of the documents for her. With NBAC, she needs to ask Carol, the owner, to add an account for
Bob and grant him access to the file. Once that is done, there is no record that Alice is
responsible for Bob’s access. The audit log shows that Carol created Bob’s account. If Carol is
unavailable, Alice can just pass copies to Bob and post his changes. No security was gained by
making delegation go through Carol. In practice, the delegation process proves to be susceptible
to policy degradation when Alice tells Bob her SharePoint credentials because of the trouble of
doing it herself. The result of making delegation difficult is a loss of security because Bob has
access to all of Alice’s permissions, and Bob’s identity does not show up in the audit trail. Proxy
certificates were introduced into the Grid framework to address this problem. [9].

Assume that Carol set up the delegation Alice requested. Alice now wishes to undo the
delegation, revoking Bob’s access to the file, and asks Carol to make the change. Should Carol
honor that request? There is no metadata listing Alice as the original delegator. Even if there
were, Dave might have also given Bob permission. If Carol removes Bob’s permission, he won’t
be able to do the job Dave wants him to do.

ZBAC allows Alice to delegate to Bob the exact subset of her rights she needs to get her job
done. Importantly, she has little incentive to share credentials, leading to better security and
auditability. Further, Bob’s authorization denotes that Alice is responsible for Bob’s access.
That metadata is what is needed to determine her permission to request a revocation. Further,
revoking one authorization does not affect any other authorizations.

Confused Deputy

Although there are a number of confused deputy attacks, such as some cross-site scripting
exploits, the vulnerability is rarely called out. It arises from ambient authorities. In the classic
example [10], Bob runs a compilation service that takes two arguments, an input file and an
output file. Bob also keeps a log file. If Alice invokes the compilation service specifying the log
as the output file, Bob’s service overwrites the log with the compiler output. In many cases,
there is nothing Bob can do to prevent this attack.

Confused deputy attacks fail with ZBAC. Alice uses her authorization to invoke Bob’s compiler
service and delegates to him permission to read the input file and permission to write the output
file. Since she only has read access to the log file, an attempt to delegate write permission will
not be honored, and the request will fail.

Transitive Access

A user, the invoker, invokes a service. In order to satisfy that request, the first service, the
sender, invokes a second service. With NBAC, there is the question of whose credentials get
used in that second invocation, the invoker’s or the sender’s. In many cases, neither nor both is
correct. If we use the sender’s credentials, then the invoker could ask for something the sender
has permission to do at the second service but the invoker does not. If we use the invoker’s

 9

credentials, the sender can take any action at the second service that the invoker has permission
to do whether the invoker wants it done or not. The next section shows a concrete example.

There is no question of credentials with ZBAC since the rights used are explicitly represented in
the authorizations. If the invoker’s permissions are used to invoke the second service, the
appropriate authorizations will have to be passed to the sender. Least privilege is supported
because those are the only invoker permissions the sender has authority to use.

4. NAVY Use Case

Service composition is a key element in making the distributed environment useful. Assembling
pre-existing services into a composite may reduce the time between identifying a requirement
and implementing it from months or longer to weeks or less. In addition to the problems of
protocol and data translation, managing access rights to such composites has proven to be a
problem in most systems.

The figure shows the scenario covered by the NAVY Limited Technical Evaluation (LTE) [10].
The user, via the ATO Portlet, invokes the ATO Service, which in turn invokes the Track
Service. The TAPE Handlers serve as Policy Enforcement Points (PEPs), and TAPE/Soutei is a
Policy Decision Point (PDP).

The implementers chose to use ABAC with provider chaining from the Liberty Alliance SAML
Profile [12], using TAPE/Soutei as the trusted third party providing the attribute assertions. With
this approach, the Track Service gets a request from the ATO Service, the sender, that includes
sender attributes in a Transited Provider assertion and the attributes of the user, the invoker, in an
Identity assertion. The TAPE Handler, acting as the PEP for the Track Service, forwards these
assertions to TAPE/Soutei for an authorization decision.

 10

The problems described in the previous section still apply in general. To avoid them, the
implementers apply this scenario with two different restrictions. One is to make the ATO
Service fully trusted by the user, which defines away the risk of the ATO Service impersonating
the user. However, without knowing how the TRACK Service is implemented, the user and the
ATO Service must fully trust it, and so on down the chain of service invocations. Alternatively,
the implementers assume that the TRACK Service only accepts invocations signed by the user,
which means that the ATO Service acts as a simple router. This choice defines away
impersonation and confused deputy problems at the cost of severely limiting the way the service
composition can be used and by whom. However, this assumption requires that the user fully
trust the TRACK Service to enforce that policy. These choices are awkward, at best, when
dealing with coalition partners.

The situation is much simpler with ZBAC. The user invokes the ATO Service with the
appropriate authorization. If that request includes no delegations, the ATO Service can only
invoke the TRACK service with its own authorization. If the user request delegates to the ATO
Service some of the user’s permissions to the TRACK Service, then those are the only user rights
the ATO Service can use. Least privilege is honored.

The NAVY scenario does not discuss parameter passing, in particular the passing of service
references as parameters. The distinction between NBAC and ZBAC becomes even clearer
when we do.

Consider a simple case that includes passing service references involving a user and two
services, very much like the NAVY example. User Alice invokes a backup service provided by
Bob, passing as an argument a reference to a service that will provide the data. Bob implements
his backup service using Carol’s copy service, which takes a reference to a service that will
provide the input and a reference to a service that will hold the copy.

With NBAC, Alice’s request succeeds only if Carol has permission to use both the input and
output services, which is unlikely to be the case. Proposed solutions, such as provider chaining,
result in Carol being able to use any of Alice’s and Bob’s permissions, an extreme violation of
Least Privilege. Even worse, Alice’s request succeeds if she specifies a service she does not
have permission to use but Carol does. In other words, Alice has successfully mounted a
confused deputy attack against Carol.

The situation is much clearer with ZBAC. Alice uses her authorization to invoke Bob’s service
and delegates to Bob permission to use the service that supplies the data. Bob invokes Carol’s
copy service, delegating to Carol the permission to use the input service that he got from Alice
and permission to use the output service. Carol ends up with the least set of permissions she
needs to carry out the request, authorizations which can be revoked when the job is completed.

There is no possibility of an inappropriate delegation in a Mandatory Access Control (MAC)
environment, because the only way to delegate is over a legitimate communications channel. In
a Discretionary Access Control (DAC) environment, each service’s PDP can enforce delegation
restrictions because it has access to the full delegation chain.

 11

5. Summary

IBAC was introduced to prevent one user from interfering with other users on a mainframe. As
the number of users grew, it became too much of a management burden to deal with all the
updates when a user’s permissions changed. The concept of “groups” addressed some of these
problems, but not all. RBAC is an adaptation of groups to distributed systems that avoids this
management problem by assigning permissions to roles and controlling which users could take
on which roles. Mismatches of the rights associated with a role in different domains led to the
problem of role explosion as implementers tried to make their roles more and more granular.
ABAC was introduced to address those problems by providing user attributes to be used to make
an access decision. An added benefit of ABAC is the way context can be combined with the
user’s attributes when implementing RAdAC. However, ABAC requires agreement on the
meaning of attributes, and the implications of changing a user’s attributes are not clear. ZBAC
addresses those problems while requiring few changes to the underlying system.

ZBAC reduces the number and scope of cross-domain agreements, thereby improving scalability
and reducing management overhead. By combining designation with authorization, ZBAC
eliminates the kind of misunderstanding that leads to confused deputy attacks. Its delegation
framework eliminates the need to manage users from other domains while simplifying the
enforcement of least privilege.

RBAC addresses issues that arose when using IBAC across machines. ABAC addresses
requirements not easily handled by RBAC, such as RAdAC. ZBAC addresses the needs of the
services architecture, where cross domain connections are intrinsic to their implementation.
Whatever comes next may require a new access control model, until then, ZBAC will more
easily and securely support the full spectrum access control methods needed in a “need to share”
coalition and first provider environment. It is important to understand that IBAC, ABAC,
RBAC, and RAdAC are degenerate cases of ZBAC with elements missing or simplified by
assumptions used in their respective designs. They still have their place when one examines the
requirements of any particular systems architecture and the security risks involved.

Acknowledgements
We’d like to thank Gunnar Peterson for helping improve the quality of this report.

References

1. D.F. Ferraiolo and D.R. Kuhn (1992) "Role Based Access Control", 15th National
Computer Security Conference, October, 1992

2. M. Blaze, J. Feigenbaum, J. Ioannidis, “The KeyNote Trust-Management System Version
2”, IETF RFC 2704, http://www1.cs.columbia.edu/~angelos/Papers/rfc2704.txt,
September 1999

3. K. Brown, “Exploring Claims-Based Identity”, http://msdn.microsoft.com/en-
us/magazine/cc163366.aspx

4. A. Pimlott and O. Kiselyov, “Soutei, a Logic-Based Trust-Management System”, FLOPS
2006, 8th International Symposium on Functional and Logic Programming. Fuji-Susono,

 12

Japan, April 24-26, 2006. Also in Springer's Lecture Notes in Computer Science
3945/2006, pp. 130-145.

5. J. Li and A. H. Karp, "Access Control for the Services Oriented Architecture", ACM
Workshop on Secure Web Services, Fairfax, VA, November 2007, also
http://www.hpl.hp.com/techreports/2007/HPL-2007-105.html

6. L. Fang and D. Gannon, “XPOLA - An Extensible Capability-based Authorization
Infrastructure for Grids”, 4th Annual PKI R&D Workshop: Multiple Paths to Trust,
Gaithersburg, MD, April 2005

7. E-speak, http://www.hpl.hp.com/personal/Alan_Karp/espeak/Architecture.pdf, August
2001

8. Waterken, http://www.waterken.com
9. S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson, “Internet X.509 Public Key

Infrastructure (PKI) Proxy Certificate Profile”, IETF RFC 3820,
http://www.ietf.org/rfc/rfc3820.txt, June 2004

10. N. Hardy, “The Confused Deputy: (or why capabilities might have been invented)”,
ACM SIGOPS Operating Systems Review, vol. 22, #4, October 1988

11. “TAB Response to CANES Security LTE After-action, Quicklook, Report”,
http://www.hpl.hp.com/personal/Alan_Karp/CANES%20Security%20LTE%20After-
action%20Quicklook%20report%20-%20TAB%20input.doc 2007

12. F. Hirsch, ed., “Liberty ID-WSF Security Mechanisms Core, Version 2.0”,
http://www.projectliberty.org/liberty/content/download/893/6255/file/liberty-idwsf-
security-mechanisms-core-v2.0.pdf, 2006

 13

Appendix A: Service Life Cycle with ZBAC5

When you look at the Information Assurance (IA) problem, the key is simplification of the
dialog necessary to complete a transaction and the absolute reduction of external dependencies to
the minimum possible during a transaction. Early attempts at building interoperable and services
based systems used the familiar access control model that assumes everyone's identity had to be
understood by everyone, that the policy encoding languages had to be common across all
systems, and that this understanding had to be arbitrated in real time.

The key to creating systems that work well at scale is to remove realtime dependencies by pre-
placement of appropriate credentials and authorizations, to take advantage of governance
relationships to delegate and simplify the issuance and management of credentials, and to use
simplified bindings to provide a provable and auditable trail to follow and interpret as required
for the dissemination of credentials.

Figure A1: Simplified service lifecycle example.

An abbreviated example illustrated in Figure A1 follows:

1. Remote System accesses the Remote Domain Authority and registers identity and
attributes.

2. Remote Domain Authority issues approval and credentials in the form of a certificate
signed by the Remote Domain Authority’s private key and containing Remote System

5 A more complex example in the enterprise space is shown in [5].

 14

identity information including its public key if applicable. This information allows the
Local User to verify that the request is being sent to the correct service provider.

3. Local Domain Authority registers with Remote Domain Authority and agrees to
MOU/Governance rules for Remote System. The Remote Domain Authority can be the
root of trust for all services under its control, or can receive the appropriate authorizations
directly from the services it manages.

4. Remote Domain Authority issues approval and credentials in the form of an authorization
assertion or credential permitting the Local Domain Authority to issue rights delegated to
it for access to the Remote System cryptographically bound to the Remote Domain
Authority’s private key,, and the Local Domain Authority’s public key. This
authorization credential may also include terms of use, expiration rules, meta-vector
describing authorization, and other applicable governance restrictions on the Local
Domain Authority, such as attributes that can be used to enforce RAdAC.

5. Local User registers user attributes with Local Domain Authority.
6. Local DomainAuthority issues an identity credential cryptographically bound to the

Local Domain Authority’s private key and the User’s public key.
7. Local User requests access to the Remote System from the Local Domain Authority.
8. Local Domain Authority following relevant governance/MOU guidance issues a

delegation credential to the Local User encoding the user’s rights, signed with its private
key and containing the public key of the Local User. The authorization credential issued
by the Remote Domain Authority to the Local Authority as proof of the right to delegate
is also sent in systems that have not pre-cached it.

9. Local User accesses the Remote System with a standard transaction signed by the Local
User’s private key, which may contain the delegation credential issued by the Local
Domain Authority as signed by the Local Domain Authority’s private key, and the
authorization credential which was issued to the Local Domain Authority and signed by
the Remote Domain Authority, (The real-time processing can be simplified here by
having the Remote Domain Authority issue the credential to the Local User using the a
credential issued by the Local Domain Authority designated by the authorization
credential issued by the Remote System. Depending on whether the Local User has a
credential issued by the Remote Domain Authority there are either two or three
cryptographic operations performed here in real-time and all the keys necessary to verify
the transaction are either prepositioned locally or contained in the transaction object.)

10. The Remote System:
a. Verifies the authorization credential issued by the Remote Domain Authority

using the locally prepositioned public key of the Remote Domain Authority if it is
the root of trust. If the service is the root of trust, it need only verify that its own
private key was used to sign the initial authorization.

b. Verifies the delegation credential issued by the Local Domain Authority using the
public key contained in the authorization credential issued by the Remote Domain
Authority,

c. Verifies the signature on the whole transaction using the public key contained in
the delegation credential,

d. Validates the assertion of rights by the Local User against the policy vector
encoded in the delegation credential,

 15

e. Validates the authority to issue those rights against the policy vector encoded in
the authorization credential, and

f. Validates format and content of the transaction against local policy.
11. Transaction is implemented and returned by Remote System signed with the Remote

System’s private key.
12. The return transaction can then be verified using the Remote System’s public key as

found in the authorization credential.

As this example shows, parts of the service life cycle are handled differently with ZBAC. Those
differences have important implications. The service creator is assumed to have full rights to the
service but doesn’t want to manage it, so the service creator delegates to the remote domain
authority all rights to the service. In turn the remote domain authority delegates portions of its
authority to the local domain authority. When local users authenticate to the local domain
authority, it delegates a subset of those rights to the user. That policy decision can depend on
authenticated identity, role, or attributes. When another organization reaches an agreement to
use the service, the remote domain authority again delegates a subset of the service’s rights to the
second local domain authority. That domain controller can then delegate a subset of its rights to
users in its domain. A service invocation includes the delegated authorization to use the service.
The service’s domain authority verifies the validity of the authorization, which can include
enforcing any policy that would be violated by otherwise legitimate delegations, and sends an
Allow/Deny to the service or its PEP.

Although, perhaps not intuitive from this discussion, this method of authorization has significant
implications.

1. All user administration is in the local domain, eliminating the geometric explosion of
permutations of user to system mappings found in many interoperable environments,

2. Allows local identity verification/authentication systems to be used intact if allowed by
remote domain restrictions,

3. Eliminates intrusive reprogramming associated with layering single sign-on and RBAC
on top of legacy systems,

4. Creates a rights inheritance model that can be used by some systems to automate rights
management within the local domain for controlling access to remote systems,

5. Allows local groups to be used where applicable to simplify administration,
6. Authorization and delegation vectors allow precise control of privileges,
7. Repudiation and revocation checking on the user can be performed locally if PEP

framework is setup for outbound enforcement,
8. Vectors are fully independent allowing changes, expirations and revocations to operate

independently between systems,
9. Certificate Authorities are fully independent between domains and there is no need for

users to be registered in each system or domain,
10. Nesting of the above concepts allow arbitrarily complex compositing and inheritance of

rights across systems and to be chained between connected domains, which we call
Federated Access Management (FAccM),

11. All assignments of rights to the user for both local and remote, are administered in the
local domain,

12. Radically simplifies cryptography,

 16

13. Limits the number of keys and certificates that have to be distributed,
14. Eliminates a lot of real time traffic and many realtime systems dependencies,
15. Allows all cryptographic operations performed in realtime to be performed locally,
16. Allows all transactions to be transport agnostic, fully stateful regarding policy and

security,
17. Sets up a completely asynchronous messaging paradigm, increasing the tolerance of last

mile bandwidth issues and intermittency.

Interestingly, this model also supports fine grained control of disclosure within “objects” using
essentially the same transitive models. If “high assurance” object routers were implemented you
would also get a significant enhancement of the controllability of the network and application
connectivity by allowing routers to inspect data for content without risk of disclosure. This
would also be an ideal framework for provisioning routers and controlling SLA based on QOS or
COS assertions without exposing a denial of service vulnerability on the network if implemented
at network entry points.

 17

Appendix B: Authentication versus Authorization for Access Control

The following table lists a variety of issues, the IA problem related to that issue, and how it is handled by both autheNtication Based Access
Control (NBAC) in its three forms that authenticate identity, role, or attributes, and authoriZation Based Access Control (ZBAC)6. The last
column contains miscellaneous comments related to the issue.

Issue Problem ZBAC NBAC Forms of Authentication
Identity Role Attributes Comments

Granularity Least Privilege LP applied to
request. Each
argument carries
rights the user
wants to apply

LP applied to
“user”.

User=person User=role User=set of
attributes

Every invocation
carries all user
rights with
NBAC

Authentication User only
authenticates to
own domain

User must be
able to
authenticate to
all domains

Multiple
logins, FIdM,
or SSO

Need prior
agreement
on role defs,
role
explosion

Need prior
agreement
on meaning
of attributes

FIdM and SSO
increase rights
associated with
each request
further violating
least privilege

Manageability

Modifying
rights

In response to
change in user’s
role or service’s
policy, change
rights given to
local user, revoke
as needed

 Change ACLs
in all relevant
domains

Change
ACLs in all
relevant
domains

Change
rules in
each
domain’s
policy
engine

Policy changes
are not rare,
NBAC needs
administrator to
make changes,
but can overload
admin

When Prior to request At request time Authorization
Decision Where In user’s domain In service

domain

Same decision
process for both

6 The distinction is what kind of token the user presents with the request. NBAC may use authorizations, but the user never sees them.

 18

RAdAC Flexibility Authorization
attributes and
context determine
access

User attributes
and context
determine access

Delegation7 Cooperation Enforces policies,
enables least
privilege
delegation 8

Enables
expression of
policies that
block delegation
but doesn’t
prevent it

 In practice, users
proxy or share
credentials if
delegation is hard

Revocation Undoing
collaboration

Right to revoke
explicit in
delegation, no
interference with
other delegations9

Make sure
revocation
request valid,
doesn’t remove
valid rights
granted by others

may not be able
to revoke login
credentials

Can only
remove
from role

Hard to map
change in
rights to
change in
attributes

Audit Responsibility
tracking

Delegation chain
shows
responsibility

Need additional
metadata to track
who granted a
right

 Need to
track
identity

Need to
track
identity

Log files
impractical for
tracking

Confused
deputy

Vulnerability Rights of invoker
known for each
argument

Can’t always
distinguish rights
of service from
rights of invoker

 ZBAC keeps
designation and
authorization
together

7 Delegation is only good when security is improved. Delegation in the sense meant here is not a security violation, it is an agency agreement under an MOU for a local
domain controller to administer certain rights within its own, known community.
8 The concept of delegation is that the local domain is better able to administer its local users than a remote system would ever be. Further, to the degree meta attributes
are shared between systems a single characterization of a user can be used to map that user’s access in to multiple systems.
9 The local domain authority is better able to timely revoke privileges if their users are locally under their control and since the mappings of a user to multiple systems
would hopefully be in a common space whenever allowed the revocation of general rights would in effect be inherited by all the connected systems in real time

 19

Composition Transitive
access

Rights carried
with each
argument

Don’t know
whose rights to
use when first
service invokes
another service

 Liberty Alliance
Transited
Provider violates
Least Privilege

Trust Global
agreements

Pairwise trust
relationships
encoded in
authorizations

Need additional
metadata to track
trust relations

Need FIdm
ahead of time

Prior
agreement
on role defs

Prior
agreement
on attribute
meanings

Trust relations
hidden when
authn cross
domains

Identity Coordination Each organization
uses its own
approach, only
coordinate form of
authorization

Need global
agreement on
authentication

FIdM, Single
Sign On, PKI
rationalization

 ZBAC more
scalable, more
flexible, easier
upgrades, fewer
global
agreements, most
pairwise10

PKI Coordination Each domain has
its own CA

Need to
coordinate CAs11

 Size of CRLs a
problem for
NBAC12 because
of centralization

10 ZBAC reduces the geometric explosion of permissions that must be managed for each person/entity. Revocation and repudiation are greatly simplified at any
meaningful scale, and the use of local domain concepts means that authentication can be handled much faster and more efficiently on smaller access control systems
having many fewer users. Due to the abstraction of the concept of authorization away from identity, the authorization of “groups” within the local domain allows
simplified administration to which systems a user will automatically inherit access rights.
11 With NBAC, the root of trust in the user’s authentication token is the user’s domain, so each service needs a CA to provide that domain’s public key. With ZBAC,
the root of trust of the authorization token is the service itself. Hence, there is no need to associate a public key with an identity on each request. Domains still need a
means to identify each other when negotiating an MOU.
12 Individual user certificates are not required in this system, only the “agency” certificates for authorization decision. So all users receive a authorization token signed
by the agency certificate that defines its respective rights. The number of keys necessary is cut down significantly. This token in effect becomes a temporary certificate
signed by the local domain.

 20

Appendix C: Additional enterprise security concerns on the SOA way forward

While we addressed specific IA&A approaches in the comparison paper and appendices A

and B, this is only part of a larger need to address potential systemic security concerns and methods
in addressing several problematic, but required capabilities, such as of distributed / transitive trust,
delegation, least privilege, manageability, system-level auditing and efficiency, to list a few. This
appendix is offered as a general reference to those other items that may compound and effect the
automated enterprise SOA way forward. Additionally, these IA/Security items listed below were
also listed as major watch / concern items in the recent NECC TRA IRT report as areas that will
need much more enterprise collaboration and coordination to fully implement an automated full
spectrum access control approach in a “need to share” coalition and first provider environment.

The access control analysis conducted to date addressees DOD and recognized Federal PKI,

yet until there is a recognized state, local, allied, and coalition PKI, there is some added risk for US-
only NIPRNET and SIPRNET PKI supporting the CDS/MLS authentication, authorization, and web
security services. For example, how can one validate IC-ISM metadata binding or authentication in
a TLS dual-certificate exchange without coalition PKI? Thus, where CDS/MLS is required, the
external CDS/MLS program carries the burden of implementing the external PKI of strength at least
equal to the US implementation. Under web security services, and as related to the data services
section, the major security methods used (including web service discovery and access decisions)
should be further evaluated – ideally based on IC-ISM metadata vs. user credentials and
authorization, which helps answer the "methods and processes" issue.

Scalability can also be an issue with disadvantaged low bandwidth environments and the

increase in numbers of users (for example in the PKI case, added devices and services that may
need credentials and privileges could significantly add to the numbers of “users” depending on how
implemented (local or enterprise)), but given the current and near-term planned state of the art in
IA/Security/PKI, these could be issues in implementing an automated DOD-wide, coalition
enterprise environment. The dominant evidence presented is "maturity" which can hide the known
dynamic nature of IA vulnerabilities, as all IT/COTS products generally have some IA related
vulnerability problems, typically mitigated through defense in depth measures. (e.g., technical
maturity alone is generally "yellow" concerning IA vulnerabilities - i.e., Windows 2000.)

The following observations and processes that support IA/Security (including C&A) should be

on a “watch list” for all future OA programs and systems:
1. Programs are placing like communities (like COI, AHF (application hosting facilities), etc))

on the same virtualized servers. As the Programs progress (and especially as they moves to
SOA), this practice may devolve and add complexity.

2. Most access control efforts are based on PKI Increment 1, where Increment 2 is supposed to
support added capabilities, which should further minimize most long-term technical
concerns therein; yet a few global PKI concerns to watch are:

a) Programs are employing PKI with Representational State Transfer (REST). As the
program moves to a stateless SOA and deployed SIPR PKI in the DIL, the IA
interactions and resultant C&A proof could be more complex.

b) The potential need for PKI certificates/credentials support to huge numbers of
devices/services (non-person entries – NPE) creates an unclear scalability capability,
which could become a CTE in future automated operational environments and
readiness assessments therein.

 21

c) DoD PKI Increment 2 provides: (a) Tactical PKI support, (b) SIPRNet
tokens/issuance, (c) HSPD-12 Compliance, and (d) Group/role hardware token
capability.

d) DoD PKI-based authentication is not yet implementable based on the non-limited
availability of PKI certificates on the SIPRNet. Program users may be authenticated
by a UserID/Password, using the same functions and capabilities provided in their
legacy systems. Maturity of PKI on the SIPRNet significantly impacts this
requirement

3. Many of the new satellites will be up by/around 2016; verbose protocols may be
problematic, including the IA/Security overhead at the tactical edge.

4. Full spectrum access control supporting a “need to share” collaboration environment in a
coalition and first provider response AOR is problematic in an enterprise SOA environment
– principally those items list in the opening paragraph above.

5. Typically the user management function of Programs defines the access control
requirements and environment at some basic level, but does not articulate the key enterprise
methods and processes needed, i.e., distributed transitive trust and “security service
chaining” as well as detailed use cases to demonstrate the interfaces, standards, governance,
etc. required.

6. Additionally digital policy standardization, collaboration and implementation is an immature
capability DoD wide, which affects the ability of enterprise Policy Decision Points (PDPs)
in a mixed/shared domain environment to access an authoritative data source (for control,
policy, MOU comparison and arbitration, etc). More global access control observations are;

a) Programs typically use a synchronous validation pattern with relatively intense
arbitration requirements where an ABAC or RBAC based system could eliminate
most of this excessive traffic requirement if implemented asynchronously. An
authorization based access control methodology, ZBAC, could resolve this and
further simplify the process by supporting local delegation of authority that greatly
simplifies administration and reduces system-wide key management efforts.

b) GIG designs, because of their synchronous assumptions and high bandwidth
requirements, are going to require a different approach to difficult last mile
bandwidth constraints. This is an acute problem for the DIL users just from a
functionality standpoint, but there is a very important architectural issue here in that
the system exposed in low bandwidth last mile applications will likely be
asymmetric with the core systems. This creates asymmetric IA patterns and
integration patterns which can create significant emergent behavior issues with
regard to end-to-end systems performance and functionality.

c) Applications designers will then have to essentially deal with multiple object and
integration patterns, depending on user context. This is generally not a good thing,
but at a minimum it needs to be clearly understood and comprehensively
accommodated.

7. IA/Security, and the IA controls therein, are relatively standardized throughout DOD thus
they are essentially “IA equivalent” environments. Still, while Certification and
Accreditation (C&A) for Programs is usually an afterthought, it should be developed in
parallel to the system functions as it will be a complex, difficult, coordination and
governance task, given the various combinations of different management and control
schemas, new SOA/services, and interfaces to external systems.

